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Abstract: - Low Density Parity Check (LDPC) codes have attracted current researchers due to their excellent 

performance and capability of parallel decoding. One major criticism concerning LDPC codes has been their 

apparent high encoding complexity and memory inefficient nature due to large parity check matrix. This led 

the researchers to move into a memory efficient LDPC called Quasi-Cyclic (QC)-LDPC which shows the 

similar performance as LDPC does. This review gives a theoretical and analytical survey on different encoding 

schemes for QC-LDPC codes. The encoding schemes are categorized in three broad categories. These schemes 

are then analyzed under those three broad fields. Also different encoding schemes are compared. 
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1   Introduction 
Low-Density Parity-Check (LDPC) codes have been 

the subject of intense research lately because of their 

capacity-achieving performance and linear decoding 

complexity. They were invented and proposed in 

1962 by Robert Gallager [1, 2]. In the late 90‟s 

LDPC codes were rediscovered by Mackay and Neal 

[3, 4] and also by Wiberg [5]. Current hardware 

speeds make them a very attractive option for wired 

and wireless systems. Gallager considered only 

regular LDPC, i.e., codes that are represented by a 

sparse parity-check matrix with a constant number 

of „ones‟ (weight) in each column and in each row. 

Later it was shown that the performance of LDPC 

codes can be improved by using irregular LDPC 

codes, i.e., both non uniform weight per column and 

non uniform weight per row [6, 7]. The parity-check 

matrix of a code can be viewed as defining a 

bipartite graph [8] with "variable" vertices 

corresponding to the columns and "check" vertices 

corresponding to the rows. Each non-zero entry in 

the matrix corresponds to an edge connecting a 

variable to a check.  

 

     One major criticism concerning LDPC codes has 

been their apparent high encoding complexity. Some 

low complexity LDPC encoding methods having 

near-linear complexity were introduced by 

Richardson et. al. [9] to lower encoding complexity, 

and its encoding method can be further simplified by 

employing LDPC codes whose binary base parity-

check matrices have dual diagonal structure, 

suggested in standards such as IEEE 802.11n and 

IEEE 802.16e. Quasi-Cyclic (QC)-LDPC has been 

proposed to reduce the complexity of the LDPC 

while obtaining the similar performance [10, 11]. A 

modified scheme based on adaptive message length 

(AML) is proposed in [12]. Further modifications 

have been done over Richardson algorithm in [32], 

[33] and [34]. An algebraic construction for the 

regular and irregular QC-LDPC codes is shown in 

[10]. The modified algebraic construction is 

presented in [13]. An arbitrary bit generation and 

correction technique for encoding QC-LDPC codes 

with dual-diagonal parity structure is shown in [14], 

[15]. QC-LDPC code under fading channel was 

proposed in [16]. A construction of QC-LDPC codes 

for Additive White Gaussian Noise (AWGN) and 

Binary Erasure Channels (BEC) channels has been 

proposed by L. Lan [17]. Hardware implementations 

of decoders for QC-LDPC codes are being analyzed 

in some current research works [18, 19]. Some 

researchers are working on Quantum QC-LDPC 

codes in which, error detection and correction can be 

performed efficiently in quantum memory [20-22]. 

Girth of QC-LDPC codes is an important issue and 

several current researches are working on this topic 

[23-26]. It has been shown that increasing the girth 

or average girth of a code increases its decoding 

performance. The girth also determines the number 

of iterations before a message propagates back to its 

original node. Performance of structured codes 

could therefore be improved by increasing their 

girths. QC-LDPC based encoding is already 
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suggested in some standards. Further applications 

and modifications of these proposals are proposed in 

[14], [27].  

 

     The encoding schemes used in QC-LDC codes 

are categorized in three types. Type I explains the 

encoding schemes related to approximate lower 

triangulation. In these schemes, H matrix is 

transformed into its approximate lower triangulation 

form. These schemes are applicable to both the 

LDPC and QC-LDPC codes. Type II explains the 

encoding schemes related to the algebraic 

construction of QC-LDPC codes and category III 

explains the encoding schemes which don‟t fall in 

the earlier two types. These different types of 

encoding are summarized in Table 1.  

 

     The rest of this paper is organized as follows. In 

section 2, the encoding schemes related to 

approximate lower triangulation schemes are 

introduced. Section 3 introduces the encoding 

schemes related to the algebraic construction of QC-

LDPC codes. The other encoding schemes are 

introduced in section 4. Then section 5 concludes 

the paper. 

Table 1 

Different Encoding Schemes 
 

Encoding 

Scheme type 

Encoding Schemes 

 

Type-I: 

 

Approximate 

Lower 

Triangulation 

Schemes 

 

 

1) Richardson Encoding 

Scheme 

2) Adaptive Message 

Length Encoding Scheme  

3) Arbitrary Bit-

Generation and Correction 

Encoding Scheme 

4) Encoding with a 

systematic approximate lower 

triangular form  

5) Encoding  for GLDPC 

codes 

6) Two stage encoding 

with Triangular Factorization 

 

Type-II: 

 

Families of 

Algebraic 

Construction of 

QC-LDPC 

codes 

 

1) Algebraic 

Construction of QC-LDPC 

codes: Bresnan Code 

2) Algebraic 

Construction of QC-LDPC 

codes by Dispersion 

3) Algebraic 

Construction of QC-LDPC 

codes: Rakibul Code 

 

Type-III: 

 

Other Encoding 

Schemes  

 

1) Encoding of QC-

LDPC Codes Related to Cyclic 

MDS Codes 

2) Efficient Encoding of 

IEEE 802.11n LDPC Codes 

3) Encoding of Array 

LDPC Codes 

 

 

2 Approximate lower triangulation 

Schemes 

 
2.1 Richardson Encoding Scheme 

 

LDPC codes are linear codes. Hence, they can be 

expressed as the null space of a parity-check matrix 

H, i.e., x is a codeword if and only if  

 

𝐻𝑥𝑇 = 0𝑇  
 

      The modifier “low-density” applies to H; the 

matrix H should be sparse and chosen at a random 

fashion. The sparseness of H enables efficient 

(suboptimal) decoding, while the randomness 

ensures (in the probabilistic sense) a good code. By 

means of Gaussian elimination, matrix H can be 

brought into an equivalent lower triangular form as 

shown in Fig. 1. Split the vector x into a systematic 

part s, and a parity part p, such that 𝑥 =  𝑠, 𝑝 . 

Construct a systematic encoder filling with the 

desired information symbols and determining the 

parity-check symbols using back-substitution.  

 

      But the actual encoding requires 𝑂(𝑛2)operations 

since, in general, after the preprocessing the matrix 

will no longer be sparse. Given that the original 

parity-check matrix is sparse, encoding can be 

accomplished in 𝑂(𝑛). Richardson proposed their 

encoding scheme with near 𝑂(𝑛) complexity and is 

shown in Fig. 2. 

mn-m

n

m

1 0

 
 

Fig.1. Equivalent lower triangular matrix using 

Gaussian elimination 
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Fig. 2. Richardson‟s proposal for efficient encoding  

 

They have taken the codeword 𝑥 = (𝑠, 𝑝1 , 𝑝2) and 

calculated p1 and p2 using the following equation 

 

𝑝1
𝑇 = −𝜑−1 −𝐸𝑇−1𝐴 + 𝐶 𝑠𝑇 

 

𝑝2
𝑇 = −𝑇−1 𝐴𝑠𝑇 + 𝐵𝑝1

𝑇  
 

      The overall complexity of determining 𝑝1
𝑇   is  

𝑂 𝑛 + 𝑔2  and that of  𝑝2
𝑇  is 𝑂 𝑛 . If the width of  

can be kept as minimum as possible, the complexity 

can be kept close to  Bringing the randomness 

in the code makes the LDPC code memory 

inefficient. To make it memory efficient, the QC-

LDPC code was evolved. 

 

2.2 Adaptive Message Length Encoding 

Scheme  

 
     By means of Gaussian elimination, a matrix H 

can be transformed into an equivalent lower 

triangular form. However this approach requires 

𝑂(𝑛2) complexity encoding step. Richardson 

proposed 𝑂(𝑛 − 𝑔2) complexity encoding 

algorithm. Two different types of equations are 

required to compute parity bits using this algorithm. 

In order to reduce the complexity to O(n), the author 

utilized approximate lower triangulation with post 

processing step where the parity bits can be 

calculated using a single equation. They assumed 

that the rows of a parity check matrix H have full 

rank. The proposed AML encoding scheme consists 

of the following three steps. 

   i)  Preprocessing step: In the preprocessing step, 

row and column permutations of a nonsingular 

parity check matrix H is performed to transform the 

parity-check matrix into approximate lower 

triangular form as shown in Fig. 3.  

 

tn-t

n

t0

C

T

B

A

m-t

m

  
Fig 3. AML scheme before post processing step 

 

 

Since this transformation is accomplished solely by 

permutations, the transformed matrix 𝐻 =  
𝐴 𝑇
𝐵 𝐶

   

is still sparse. All the submatrices are sparse and 𝑇 is 

lower triangular with ones along the diagonal. The 

dimension of the matrix  is variable since the 

dimension of matrix  can vary according to the 

randomly generated H matrix.  

   ii)  Encoding step: Let 𝑥 = (𝑠, 𝑝) where s, the 

systematic part has length of (𝑛 − 𝑡) and p, the 

parity part has length of t. Constraint 𝐻𝑥𝑇 =
0𝑇results in two equations, namely 

 

 

                 𝐴𝑠𝑇 + 𝑇𝑝𝑇 = 0                                  (1) 

 

𝐵𝑠𝑇 + 𝐶𝑝𝑇 = 0                                   (2) 

 

 

From the above equations we get  

 

 𝑝𝑇 = 𝑇−1𝐴𝑠𝑇                                     (3) 

 

 𝐵 = 𝐶𝑇−1𝐴                                       (4) 

                                      

     Once the 𝑡 × (𝑛 − 𝑡) matrix, 𝑇−1𝐴 has been 

precomputed, the calculation of  can be done with 

complexity 𝑂 𝑡  𝑛 − 𝑡  . Rather than precomputing  

𝑇−1𝐴 and then multiplying by sT, we can get  by 

breaking the computation into two smaller steps, 

each of which is efficiently computable. Since  is 

sparse, AsT  is computed with complexity O(n) and 

then AsT  is multiplied by 𝑇−1. 𝑇−1 𝐴𝑠𝑇 = 𝑦𝑇  is 

equivalent to the system 𝐴𝑠𝑇 = 𝑇𝑦𝑇 . This 

computation can be performed with 𝑂(𝑛) by back-

substitution, since 𝑇 is lower triangular and sparse. 

Therefore, the overall complexity for computing  is 

𝑂(𝑛).  

 

    iii) Post processing step: Parity bits p1 , . . . , pt  can 

be computed by using  and  submatrices since the 

row rank of the matrix  A T  is .Therefore, we can 
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ignore  and  submatrices in the transformed  

matrix to reduce complexity during the encoding. 

After this post processing step, the resultant parity 

check matrix becomes   A T  as shown in Fig. 4. 

The comparison between Richardson and the AML 

encoding schemes is summarized in Table 2. 

 

tn-t

0
C

AA
T

t

 
 

Fig. 4. AML scheme after post processing step 

  

 

Table 2 

Comparison in encoding steps between Richardson 

scheme and AML scheme  
 

Richardson scheme AML scheme 

Preprocessing step:  

Input: Non singular H 

matrix.  

Output: matrix 

 
𝐴 𝐵 𝑇
𝐶 𝐷 𝐸

  

Preprocessing step: 

Input: Non singular H 

matrix. 

Output: matrix  
𝐴 𝑇
𝐵 𝐶

  

Check rank step: 

Ensure that −𝐸𝑇−1𝐵 +
𝐷 is nonsingular 

Encoding step: 

Determine 𝑝 to 

construct the codeword 

𝑥 =  𝑠, 𝑝  
Complexity in 

encoding step = O(n) 

Encoding step: 

Determine 𝑝1 and 𝑝2to 

construct the codeword 

𝑥 =  𝑠, 𝑝1 , 𝑝2  
Complexity in encoding 

step = O(n+g
2
) 

Post processing step: 

Delete the sub matrix B 

and C to reduce 

encoding complexity 

 
 
2.3 Arbitrary Bit-Generation and Correction 

Encoding 
 

    An arbitrary bit generation and correction (ABC) 

technique for encoding QC-LDPC codes with dual-

diagonal parity structure is shown in [14], [15]. The 

QC-LDPC codes based on circulant sub-matrices is 

analyzed. Parity check matrix is modified and the 

encoder of quasi-cyclic LDPC codes is implemented 

using shift registers where the complexity of 

encoding is linearly proportional to the code length.  

Although modifying the parity matrix could result a 

slight performance loss due to short cycles, they 

reported that BLER performance of their proposed 

scheme is almost similar to the unaltered standard  

matrix while complexity of encoding is slightly 

reduced. There are three main phases of encoding: 

first is the arbitrary parity-bit generation, second is 

sequential process to find remaining parity-bits 

exploiting dual-diagonal structure, and third is 

correction process for parity-bits. As it is true for all 

type to LPDC codes, the parity-check result of 

output code word vector c should meet  𝐻. 𝑐 =  0. 

After modification of rate 𝑅 = 1/2 mother matrix 

𝐻, it can be sectorized into three sub matrices as 

shown in Fig.10. The information bit region , parity 

bit region  for bit-flipping operation and parity bit 

region  for non bit-flipping,  

 

 
 

Fig. 5. Sectorized H matrix for codeword length 

1944 

 

 

H =  [A Q U]                                 (5) 

 

x =  As                                     (6) 

 

      Parity part of matrix 𝐇 is partitioned into two 

parts as 𝐐 and 𝐔. The boundary line is placed 

between second and third sub-block where three 

identity matrices are placed in a row. For example, 

three sub-blocks with zero cyclic shifts is located at 

𝑚/2-th row in Fig. 5. Thus, boundary line between 

𝐐 and 𝐔 is set at 𝑚/2 -th and (𝑚/2 + 1) -th 

column. The vector x is formed by multiplying 

information bit vector s to sub-matrix A, as defined 

in Eq. (6). The proposed LDPC encoder starts 

encoding by generating Z arbitrary parity 

bits 𝑝0 , 𝑝1 , ⋯𝑝𝑍−1 for first column subblock in 

region 𝐐. For example, all zeros can be set 

for 𝑝0 , 𝑝1 , ⋯𝑝𝑍−1. Assuming all zero is correct, 

parity bit values for 𝑝𝑍 , 𝑝𝑍+1 , ⋯𝑝2𝑍−1 are 

determined since (𝑥0 , 𝑥1 , . . . , 𝑥𝑍−1)𝑇  +  𝐐0 ⋯2𝑍−1 ·
 (𝑝0 , 𝑝1 , ⋯𝑝2𝑍−1)𝑇  =  0 is true for first sub-block 

row. Next, 𝑝2𝑍 , 𝑝2𝑍+1 , ⋯𝑝3𝑍−1 are determined 

sequentially since (𝑥𝑍 , 𝑥𝑍+1 , . . . , 𝑥2𝑍−1)𝑇  +
 𝐐𝑍 ⋯3𝑍−1 ·  (𝑝𝑍 , 𝑝𝑍+1 , ⋯𝑝3𝑍−1)𝑇  =  0. Note that 

𝑝𝑍 , 𝑝𝑍+1 , ⋯𝑝2𝑍−1 as well as 𝑥𝑍 , 𝑥𝑍+1 , . . . , 𝑥2𝑍−1 are 
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previously found. Exploiting the dual-diagonal 

parity structure, this recursive procedure is done 

until all parity bits (i.e. 𝑝𝑍 , . . . , 𝑝(𝑚𝑍−1)) are 

determined. After recursion procedure, validity of 

last sub-block parity bits located at (𝑚 − 1) −th 

row,  𝑝(𝑚−1)𝑍−1 , 𝑝(𝑚−1)𝑍 , . . . , 𝑝𝑚𝑍−1, is checked. It 

must hold true that last Z parity bits must check by 

satisfying (𝑥(𝑚−1)𝑍 , 𝑥(𝑚−1)𝑍+1 , . . . , 𝑥𝑚𝑍−1)𝑇  +

( 𝑝0 , 𝑝1 , ⋯⋯⋯ 

 𝑝𝑍−1)𝑇  + (𝑝(𝑚−1)𝑍 , 𝑝 𝑚−1 𝑍+1 , . . . , 𝑝𝑚𝑍−1)𝑇  =

 0. If some parity bits are not correctly generated, 

their check results are not zero, and check is failed 

for specific bits. The final check results are stored in 

a vector 𝐟. 

 

𝐟 =  (𝑥(𝑚−1)𝑍 , . . . , 𝑥𝑚𝑍−1)𝑇  +  (𝑝0 , 𝑝1 , . . . , 𝑝𝑍−1)𝑇 

                      + (𝑝(𝑚−1)𝑍 , 𝑝(𝑚−1)𝑍+1 , . . . , 𝑝𝑚𝑍 +1)𝑇             

(7)    

                 

    Thus, vector 𝐟 is defined as  

 

 𝐟 =  (𝑥891 , . . . , 𝑥971)𝑇  + (𝑝0 , 𝑝1 , . . . , 𝑝81)𝑇  +
(𝑝891 , 𝑝892   , . . . , 𝑝971)𝑇in case of 𝑅 = 1/2, 

codeword length 𝑛 = 1944, sub-block size 𝑍 = 81. 

The LDPC encoding is summarized as following 

steps. 

 

Step 1: Form accumulated information-bit vector 𝑥 

by doing matrix operation 𝑥 =  𝐴𝑠. 

 

Step 2: Set parity bits  𝑝0 , 𝑝1 , ⋯𝑝𝑍−1 as arbitrary 

binary values. Exploiting the dual-diagonal parity 

structure, solve unknown parity bits, 𝐻 ·
 (𝑠𝑇  , 𝑝0 , . . . , 𝑝𝑚𝑍−1)𝑇  =  0, by recursion. 

 

Step 3: Store final check result vector  

 

 (𝑓0 , . . . , 𝑓𝑍−1)𝑇 =  (𝑥(𝑚−1)𝑍 , . . . , 𝑥𝑚𝑍−1)𝑇  +

 𝑄( 𝑝0 , 𝑝1 , ⋯⋯𝑝𝑍−1)  + (𝑝 𝑚−1 𝑍 ,  

𝑝 𝑚−1 𝑍+1  , . . . , 𝑝𝑚𝑍−1)𝑇 for correction of initially 

calculated parity bits, and create an vector v which is 

an augmented version of vector f with the column 

length of block 

𝑸;  𝒗 =  (𝐟T  , 𝐟T  , 𝐟T  , 𝐟T  , 𝐟T  , 𝐟T  , 𝐟T)T. The number 

of final check result vector 𝐟 to be augmented is 
𝑚

2
 +  1 in case of 802.11n draft standard. 

 

Step 4: Add vector 𝐯 to parity bits 

 𝑝0 , 𝑝1 , ⋯𝑝(
𝑚

2
 + 1 )𝑍−1 in region 𝑄 to correct them; 

( 𝑝 0 , 𝑝 1 , ⋯⋯⋯𝑝 (𝑚
2

 + 1 )𝑍−1)𝑇  = 

( 𝑝0 , 𝑝1 , ⋯𝑝(
𝑚

2
 + 1 )𝑍−1)𝑇  +  𝐯. Parity bits in block 𝐔 

are not changed.  

 

The complexity comparison for Richardson, Rakibul 

and ABC technique is shown in Table 3. The 

complexity calculations are performed by using 

802.11n based H matrix. 

 

Table 3 

Computational complexity in different encoding 

schemes 

 

Parameter Richardson 

Scheme 

Rakibul 

Scheme 

ABC 

Scheme 

p1
T  4941 − − 

AsT  4455 4617 4941 

Bp1
T  − − − 

Tp2
T 972 − 972 

TpT − − − 

𝑓 − − 162 

𝑣 − − 486 

Total 10368 4617 6561 
 

 

2.4 Encoding with a systematic approximate 

lower triangular (SALT) form  
 

The first step in this encoding [32] is to transform 

the H matrix with as small gap g as possible, into an 

equivalent almost lower triangular form 𝐻1, as 

illustrated by Fig. 2. As the ALT form, 𝐻1, of the H 

matrix, is obtained by row and column permutations 

only, the submatrices A, B, C, D, T and E are all 

sparse matrices. In a second step the matrices A, B 

and T are kept, and the matrix E is transformed into 

an all-zero matrix and the matrix D into an identity 

matrix, both by Gaussian elimination. The resulting 

equivalent H matrix has systematic approximate 

lower triangular (SALT) form and full rank, and this 

parity check matrix is denoted by HH; it is 

illustrated by Fig. 6. It is assumed that during the 

process of transformation of the original H matrix 

into the equivalent form, HH, any linear dependent 

rows (which frequently but not necessarily occur in 

LDPC code constructions) are removed, so that the 

equivalent SALT form HH of the H matrix has full 

rank and the number of rows equals the number m of 

parity bits. To obtain the diagonal structure for the 

matrix T permutation of columns may be necessary, 

which means that bit-positions within the code word 

are relocated. Although this means that the matrices 

H and HH will not describe exactly the same code, 

the codewords will only differ in the ordering of the 

bits. This trivial type of change is assumed to be 

contained in our notion of „equivalence‟ of the parity 
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check matrices. 

 

m-gn-m

n

m-g0

0

T

0

B

C1

A

g

g

m

0D1

 
 

Fig. 6. Parity Check Matrix, HH, in systematic 

approximate lower triangular (SALT) form 

 

 

Due to the structure of the SALT form Fig. 6 we can 

conveniently pick the first 𝑛 − 𝑚 bit positions (from 

the left) in the codeword to be the data bit positions, 

i.e., the columns corresponding to the matrices A 

and C1 are those of the data bits. Hence, the 

codewords have the following structure: 𝑣 = 

(𝐮, 𝐩𝟏, 𝐩𝟐) with 𝑢 the 𝑛 − 𝑚 data bits, 𝑝1 the first g 

parity bits and 𝐩𝟐 the remaining (𝑚 − 𝑔) parity bits. 

 

The first 𝑔 parity bits 𝐩𝟏 can be directly determined 

from the sub-matrices C1 and D1 according to 

𝐩𝟏 =  𝐮 . 𝐶1
𝑇 . Further, from the parity-check 

condition 𝐇 . 𝐯𝑇  =  𝟎𝑛×1 for any codeword 𝐯, we 

obtain 𝐴. 𝐮𝐓 + 𝐵. 𝐩𝟏
𝐓  + 𝑇. 𝐩𝟐

𝐓  = 𝟎𝑚×1. As the 

matrix T has lower triangular form, we obtain the 

second set  𝐩𝟐  = {𝑝2 1 , 𝑝2 2 , ⋯ , 𝑝2 𝑚 − 𝑔 } 

of parity bits by back-substitution. 

 

2.5 Efficient encoding approach for 

generalized low density parity check 

codes 
 

Inspired by the work in [9], the authors in [33] 

investigated a similar efficient encoding scheme for 

(𝑁, 2, 𝑛) generalized low-density (GLD) parity 

check codes. In [9] the greedy algorithms are used to 

construct approximate upper/lower triangular LDPC 

parity check matrix. Different with that approach, 

based on the structure of GLD parity check matrix, 

the authors proposed a systematic approach to 

construct approximate upper triangular (𝑁, 2, 𝑛) 

GLD parity check matrix H under the condition that 

no two constituent submatrices have more than one 

overlapping nonzero column. 

 

Construction of H 

 

Let the constituent code 𝐶0 be an (𝑛, 𝑘) code and its 

parity check matrix 𝐻0 have systematic form [𝐼, 𝑃], 
where I is an (𝑛 − 𝑘) by (𝑛 − 𝑘) identity matrix. 

They defined 𝑁/𝑛 as s and 𝑠 ∙  𝑛 − 𝑘  as L, 

respectively. The systematic construction approach 

of H can be shown in two steps: 

 

1. Construct a matrix 𝐻 =  𝐻 1𝑇
, 𝐻 2𝑇

 
𝑇
 where both 𝐻 1 

and 𝐻 2 are L by N dimensional and contain s 

constituent submatrices. 

 

2. Obtain H by reordering certain columns of  𝐻 . 

 

First, 𝐻 1 is constructed as [𝐼, 𝑆𝑃], where 𝐼 is an 𝐿 by 

𝐿 identity matrix and 𝑆𝑃 is a block diagonal matrix 

containing 𝑠 copies 

of submatrix 𝑃 as shown in Fig. 7. It is noted that 𝐻 1 

can be seen as the parity check matrix of a super-

code which consists of s constituent codes. 

 

 
Fig. 7. Structure of matrix 𝐻 1 

 

𝐻 2  is constructed by permuting columns of matrix 

Q as shown in Fig. 8. They wrote matrix Q in block 

matrix form as  𝑄1 , 𝑄2 , where 𝑄1 and 𝑄2 are 

𝐿 ×  (𝑁 − 𝐿) and 𝐿 ×  𝐿, respectively. By 

introducing two column permutations, 𝜋1 and 𝜋2, 

we construct 𝐻 2 as [𝜋1 (𝑄2), 𝜋2 (𝑄1)]. 𝐻 2 also 

defines a super-code consisting of s constituent 

codes. Combining 𝐻 1  and 𝐻 2  together, a (𝑁;  2;  𝑛) 

GLD parity check matrix 𝐻 =  𝐻 1𝑇
, 𝐻 2𝑇

 
𝑇
 is 

developed. Here 𝜋1 and 𝜋2 are chosen at random 

with the condition that no two constituent 

submatrices in 𝐻  have more than one overlapping 

nonzero column. Based on the prerequisite that 

𝑁/𝑛 ≥ 𝑛 and the structure of 𝐻 1   and Q, it can be 

proved that such two permutations always exist. 

 

Since 𝐻 2
2 = 𝜋2 (Q1) and Q1 contains  

𝑁−𝐿

𝑛
  = 

 
𝑠∙𝑛−𝑠∙(𝑛−𝑘)

𝑛
  =  

𝑠∙𝑘

𝑛
  complete copies of systematic 

parity check matrix 𝐻0, A column permutation 

𝜋3  can always be found which makes 𝐻 = 𝜋3(𝐻 ). 

The matrix has the approximate upper triangular 
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form as shown in Fig. 9, in which each 𝑃𝑖 , 𝑖 =
 1, ⋯ , 𝑠, is obtained by removing some columns 

from matrix P. As shown in Fig. 9, 𝐻 can be written 

as 

 

𝐻 =  
𝑇
𝐴

𝐵
𝐶

𝐷
𝐸
  

 

 
 

 

Fig. 8. Structure of matrix 𝐻 2 

 

 

 
 

Fig. 9. Structure of matrix H 

 

Encoding Process 
 

i. Compute 𝑦𝐶 = 𝐷. 𝑥𝑐   and 𝑧𝐶 = 𝐸. 𝑥𝑐  which 

is efficient because both D and E  are 

sparse; 

 

ii. Solve 𝑇. 𝑥 𝑎 = 𝑦𝐶 . Since T  has the form as 

shown in Fig 8, it can be proved that 

𝑇−1 = 𝑇. Therefore, it can be written 

𝑥 𝑎 = 𝑇. 𝑦𝐶  which can be easily 

computed since T T is sparse; 

 

iii. Evaluate 𝑠 = 𝐴. 𝑥 𝑎 + 𝑧𝐶 . which is also 

efficient since A A is sparse; 

 

iv. Compute 𝑥𝑏 = 𝜑 ∙ 𝑠 , where 𝜑 =
 (𝐴 ∙ 𝑇 ∙ 𝐵 + 𝐶)−1. In this step, the 

complexity is scaled by [(𝐿 − 𝑘 ∙

𝐹𝑙𝑜𝑜𝑟  
𝑠−𝑘

𝑛
 ]2. 

 

v.  Finally 𝑥𝑎   can be obtained by solving 

𝑇 ∙ 𝑥𝑎  =  𝐵 ∙ 𝑥𝑏  + 𝑦𝐶 . Since 𝑇−1 =
𝑇, 𝑥𝑎  =  𝑇 ∙ (𝐵 ∙ 𝑥𝑏  +  𝑦𝐶). This is 

efficient since both T and B are sparse. 
 

2.6 Two stage encoding with Triangular 

Factorization 
 

 

Two stage encoding with Triangular Factorization 

(TSTF) algorithm shown in [34] explains the 

encoding in two steps.  

 

1. Pre-computation step: Permute row vectors 

and column vectors of the parity check 

matrix H so that the 𝐻2 part of H satisfies 

the LP condition, and the triangular 

matrices L and U with 𝐻2 = 𝐿𝑈 mod 2 are 

sparse.  

2. Encoding step: Given an information vector 

𝒔  and parity check vector 𝒑, the encoding 

stages are  

 

i.     Compute . 

ii. Solve 𝐻2𝒑
𝑇 = 𝒖𝑇after computing 

𝒗𝑇 = 𝐿−1𝒖𝑇  by back substitution for L 

and computing 𝒑𝑇 = 𝑈−1𝒗𝑇 by back 

substitution for U. 

 

 

3  Families of Algebraic Construction 

of QC-LDPC codes 
 

3.1 Algebraic Construction of QC-LDPC 

codes: Bresnan Code 
      

The paper in [10] discusses an algebraic construction 

for the regular and irregular QC-LDPC codes. The 

regular LDPC codes have the same number of ones 

in every row and column. The irregular LDPC codes 

have a different number of ones in columns and 

rows. The QC-LDPC codes consist of horizontally 

concatenated circulant sub-matrices. Each circulant 

sub-matrix is a square matrix for which every row is 
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the cyclic shift of the previous row, and the first row 

is obtained by the cyclic shift of the last row. In this 

way, every column of each circulant sub-matrix is 

automatically the cyclic shift of the previous 

column, and the first column is obtained by the 

cyclic shift of the last column. The H matrix of 

dimension  𝑚 × 𝐿𝑚      for the QC-LDPC can be 

written as 

 

 

𝐻 =  𝐻1 𝐻2 𝐻3  ⋯  𝐻𝐿                                   (8) 

 

 

where 𝐻𝑖  is the i-th circulant sub-matrix of 

dimension  𝑚 × 𝑚 , 𝑖 = 1, ⋯ , 𝐿. For the circulant 

matrices, the row weight and column weight are the 

same and fixed. Once the parity check matrix  is 

defined, the generator matrix is obtained. The 

matrices are created such that they should satisfy the 

constraint 𝐺𝐻𝑇 = 0. All the bits to be encoded are 

run through the generator matrix, and, therefore, all 

valid code words obey the property C𝐻𝑇 = 0 where 

C is the codeword. 

 

     The Quasi-Cyclic Generator matrix of rate 

𝑅 = (𝐿 − 1)/𝐿 has the following structure: 

 

 

𝐺 =

 
 
 
 
 
 
𝑃2

𝑇 𝐼𝑚 0 0

𝑃3
𝑇 0 𝐼𝑚 0

𝑃4
𝑇 0 0 𝐼𝑚

⋯
⋯
⋯

0
0
0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑃𝐿

𝑇 0 0 0 0 𝐼𝑚  
 
 
 
 
 

 

 

 

As one of the requirements is 𝐺𝐻𝑇 = 0, we can 

write 

 

 

𝐺𝐻𝑇 =

 
 
 
 
 
 
𝑃2

𝑇 𝐼𝑚 0 0

𝑃3
𝑇 0 𝐼𝑚 0

𝑃4
𝑇 0 0 𝐼𝑚

⋯
⋯
⋯

0
0
0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑃𝐿

𝑇 0 0 0 0 𝐼𝑚  
 
 
 
 
 

×

 
 
 
 
 
 
𝐻1

𝑇

𝐻2
𝑇

𝐻3
𝑇

⋮
𝐻𝐿

𝑇 
 
 
 
 
 

= 0          

(9) 

 

 

From the above relation, we can get 𝑃𝑖 = 𝐻1
−1𝐻𝑖, 

where 𝑖 = 1 ⋯𝐿. The inverse of a circulant matrix is 

a circulant, and the product of two circulant matrices 

is also a circulant matrix. 

 

     Therefore, the QC-LDPC of different rates 

(𝐿 − 1)/𝐿 can be produced from the above-defined 

generator matrix G. By using this construction, the 

quasi-cyclic nature of generator matrix is preserved. 

Since the generator matrix is quasi-cyclic, the first 

row of each circulant sub-matrix is stored, and 

successive rows can be generated by a shift register 

generator. This greatly simplifies the encoder 

design. It is crucial that the circulant sub-matrix 𝐻1 

must be a nonsingular matrix. In order to maintain 

the non singularity of the circulant sub matrix 𝐻1, 

polynomial representation of its first row should not 

be a factor of 𝑥𝑚  − 1. 

 

3.2 Algebraic Construction of QC-LDPC 

codes by Dispersion 
 

In this section, a dispersion method for constructing 

QC-LDPC codes is presented for correcting erasure 

bursts [31]. The codes constructed by this method 

also perform well over the AWGN and binary 

random erasure channels. Consider a 4 ×
4𝑘  𝐇EG  4,4𝑘  subarray of an array 𝐇EG  of circulant 

permutation matrices given by  

 

𝐇EG = 𝐌EG
T  

 

Where 𝐇EG  is the transpose of 𝐌EG  and 𝐇EG  is a 

𝑞 × 𝐾 array of (𝑞𝑚−1 − 1) ×  𝑞𝑚−1 − 1  circulant 

permutation matrices and is a 𝑞 𝑞𝑚−1 − 1 ×
𝐾 𝑞𝑚−1 − 1  matrix over 𝐺𝐹(2) with column and 

row weights 𝑞 and 𝐾, respectively. Here 4 ≤ 𝑞 and 

1 ≤ 𝑘 ≤  
𝐾

4
 . Dividing 𝐇EG  4,4𝑘  into k 4 × 4  sub 

arrays as follows: 𝐇EG  4,4𝑘 = [𝐌0 𝐌1 ⋯    𝐌𝑘−1], 
where for 0 ≤ 𝑗 < 𝑘 

 

 

𝐌𝑗 =

 
 
 
 
 
𝐀0,4𝑗 𝐀0,4𝑗+1

𝐀1,4𝑗 𝐀1,4𝑗+1

𝐀0,4𝑗+2 𝐀0,4𝑗+3

𝐀1,4𝑗+2 𝐀1,4𝑗+3

𝐀2,4𝑗 𝐀2,4𝑗+1

𝐀3,4𝑗 𝐀3,4𝑗+1

𝐀2,4𝑗+2 𝐀2,4𝑗+3

𝐀3,4𝑗+2 𝐀3,4𝑗+3 
 
 
 
 

 

 

 

Since 𝐇EG  4,4𝑘  satisfies the RC constraint, each 

subarray 𝐌𝑗  also satisfies the RC constraint. From 

𝐌𝑗 , we form an 8 × 8 array of circulant permutation 

and zero matrices, as shown below 
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𝐃𝑗 =

 
 
 
 
 
 
 
 
 

𝐀0,4𝑗 0

𝐀1,4𝑗   𝐀1,4𝑗+1

0             0
0              0

𝐀2,4𝑗    𝐀2,4𝑗+1

𝐀3,4𝑗   𝐀3,4𝑗+1

𝐀2,4𝑗+2 0

𝐀3,4𝑗+2 𝐀3,4𝑗+3

0    𝐀0,4𝑗+1

0 0

𝐀0,4𝑗+2 𝐀0,4𝑗+3

𝐀1,4𝑗+2 𝐀1,4𝑗+3

0                0
0                0

0  𝐀2,4𝑗+3

0 0

0  𝐀0,4𝑗+1

0          0

𝐀0,4𝑗+2 𝐀0,4𝑗+3

𝐀1,4𝑗+2 𝐀1,4𝑗+3

0           0
0          0

        
0                  𝐀2,4𝑗+3

0          0

𝐀0,4𝑗         0

𝐀1,4𝑗 𝐀1,4𝑗+1

0           0
0          0

𝐀2,4𝑗 𝐀2,4𝑗+1

𝐀3,4𝑗 𝐀3,4𝑗+1

𝐀2,4𝑗 +2 0

𝐀3,4𝑗 +2 𝐀3,4𝑗+3 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

𝐃𝑗  is called a dispersion of 𝐌𝑗 , and we can readily 

see that 𝐃𝑗 also satisfies the RC constraint. Each 

submatrix in 𝐃𝑗   is either a  𝑞𝑚 − 1 ×  𝑞𝑚 − 1  

circulant permutation matrix or a 𝑞𝑚 − 1 ×
 𝑞𝑚 − 1  zero matrix. 𝐃𝑗  is an 8 𝑞𝑚 − 1 ×

8 𝑞𝑚 − 1  matrix over 𝐺𝐹(2) with both column and 

row weights four. Since each circulant permutation 

matrix in 𝐃𝑗   is followed by four  𝑞𝑚 − 1 ×
 𝑞𝑚 − 1  zero matrices (including the end-around 

case), the zero span of 𝐃𝑗  is at least 4 𝑞𝑚 − 1 . 

Replacing each subarray 𝐌𝑗  in 𝐇EG  4,4𝑘  by its 

dispersion 𝐃𝑗  , we obtain an 8 × 8𝑘   array of 

 𝑞𝑚 − 1 ×  𝑞𝑚 − 1  circulant permutation and 

zero matrices, 𝐇EG ,d 8,8𝑘 = [𝐃0 𝐃1 ⋯    𝐃𝑘−1] . 

𝐇EG ,d 8,8𝑘  is an 8 𝑞𝑚 − 1 × 8𝑘 𝑞𝑚 − 1 matrix 

over GF(2) with column and row weights 4 and , 

respectively, that satisfies the RC constraint and has 

a zero-covering span of length at least 4 𝑞𝑚 − 1  

bits. 𝐇EG ,d 8,8𝑘  is called the dispersion of 

𝐇EG  4,4𝑘 . The null space of 𝐇EG ,d 8,8𝑘  gives a 

QC-LDPC code 𝐶𝑞𝑐 ,𝑑  whose Tanner graph has a 

girth of at least six. The code is capable of correcting 

any erasure burst of length at least up to 4 𝑞𝑚 −
1 + 1 bits. 

 

3.3 Algebraic Construction of QC-LDPC 

codes: Rakibul Code 
 

    The H matrix for the QC-LDPC code proposed in 

[13] is written as 

 

𝐻 =  [𝐻𝐿−1  ⋯  𝐻2 𝐻1 𝐻2  ⋯  𝐻𝐿]                 (10) 

 

The Quasi-Cyclic Generator matrix of rate 𝑅 =
 1/2 has the following structure: 

 

 

𝐺 =

 
 
 
 
0 ⋯ 0 𝑃2

𝑇 𝐼𝑚 0

0 ⋯ 𝑃3
𝑇 0 0 𝐼𝑚

⋯
⋯

0
0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑃𝐿

𝑇 ⋯ 0 0 0 0 ⋯ 𝐼𝑚  
 
 
 

 

 

 

As one of the requirements is 𝐺𝐻𝑇 = 0, we can 

write 

 

 

 
 
 
 
0 ⋯ 0 𝑃2

𝑇 𝐼𝑚 0

0 ⋯ 𝑃3
𝑇 0 0 𝐼𝑚

⋯
⋯

0
0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑃𝐿

𝑇 ⋯ 0 0 0 0 ⋯ 𝐼𝑚  
 
 
 

×

 
 
 
 
 
 
 
 
𝐻𝐿−1

𝑇

⋮
𝐻2

𝑇

𝐻1
𝑇

𝐻2
𝑇

⋮
𝐻𝐿

𝑇  
 
 
 
 
 
 
 

=

0       (11)                          
 

 

From the above equation, several relations can be 

written 

 

 

𝑃2
𝑇𝐻1

𝑇 = 𝐻2
𝑇    

𝑃3
𝑇𝐻2

𝑇 =  𝐻3
𝑇   

 ⋮ 
   𝑃𝐿

𝑇𝐻𝐿−1
𝑇 =  𝐻𝐿

𝑇                                  (12) 

      

The previous equation concludes 𝑃𝑖 = 𝐻𝑖−1
−1 𝐻𝑖, 

where 𝑖 = 2 ⋯𝐿. The inverse of a circulant matrix is 

circulant, and the product of two circulant matrices 

is also a circulant matrix. By using this construction, 

the quasi-cyclic nature of generator matrix is 

preserved. Since the generator matrix is quasi-cyclic, 

the first row of each circulant sub-matrix is stored, 

and successive rows can be generated by a shift 

register generator. The Bresnan code and Rakibul 

code can be compared and shown in Fig. 10. 
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Fig. 10 Comparison between Bresnan and Rakibul 

QC-LDPC codes 

 

4  Other Encoding Schemes 

 
4.1 Encoding of QC-LDPC Codes Related to 

Cyclic MDS Codes 

 
The authors in [33] presented an efficient systematic 

encoding algorithm for QC-LDPC codes that are 

related to cyclic maximum-distance separable 

(MDS) codes. They showed that the algebraic nature 

of the QC-LDPC codes related to cyclic MDS codes 

makes it possible to design a systematic encoding 

algorithm with linear time complexity. The 

algorithm can be easily implemented by using 

polynomial multiplication and division circuits. The 

division polynomials can be completely 

characterized by their zeros, and the sum of the 

respective numbers of their zeros will be equal to the 

parity-length of the codes. 

 

 

The encoding procedure is shown below. 

 

1) Input  𝑐(0), 𝑐(1),· · · , 𝑐(𝑞). 
 

2) For   𝑖 =  0, 1,· · · , 𝑟 −  1, compute 𝑝(𝑖) as 

𝑝(𝑖)  ≡  𝑐 𝑗  𝑞−𝑟
𝑗=0  ·  𝜓𝑞−𝑗

(𝑖)
 𝑚𝑜𝑑 (𝑥𝑞−1  −  1), where 

deg(𝑝(𝑖))  <  𝑞 −  1. 

 

3) For 𝑖 =  𝑟 −  1, 𝑟 −  2,· · · , 1, 0, update 𝑐(q−i)  

by 

𝑐(𝑞−𝑖) ←  𝑐(𝑞−𝑖)  +  ((𝑐(𝑞−𝑖)  + 𝑝(𝑖)) 𝑚𝑜𝑑 𝜓𝐼
(𝑖) 

), 

and then update 𝑝(0), 𝑝(1),· · · , 𝑝(𝑖−1)  by 𝑝(𝑗 )  ←

  𝑝 𝑗    + 𝑐 𝑞−𝑖 𝜓𝐼
 𝑖   mod  𝑥𝑞−1  −  1 , where 

𝑗 =  0, 1 · · · , 𝑖 −  1. 
 

4) Output 𝑐(0), 𝑐(1),· · · , 𝑐(𝑞). 
 
 

4.2 Efficient Encoding of IEEE 802.11n 

LDPC Codes 
 

    Given a (sparse) parity check matrix H, the goal 

of encoding is to compute the systematic codeword  

from the input sequence m. Owing to the special 

structure of the IEEE 802.11n LDPC parity check 

matrices, the encoding process can be done very 

efficiently. The IEEE 802.11n LDPC codes are 

based on block-structured LDPC codes with circular 

block matrices [28], i.e. the entire parity check 

matrix can be partitioned into an array of block 

matrices; each block matrix is either a zero matrix or 

a right cyclic shift of an identity matrix. The parity 

check matrix designed in this way can be 

conveniently represented by a base (block) matrix. 

The base matrix Hb  for an IEEE 802.11n LDPC 

code with code length 𝑁 = 1944 bits and 𝑟𝑎𝑡𝑒 =
1/2 can be seen from the standard. The block size is 

𝑍 = 81 bits with 𝑚𝑏 = 12 and 𝑛𝑏 = 24. In this 

matrix, each entry represents a circular right shift of 

the identity matrix IZ . For example if 𝑍 = 3 and the 

entry is 1, then the corresponding block 

is [0 1 0;  0 0 1;  1 0 0]. The −1 entry means a null 

(all zero) block. In this way the above matrix is a 

compact expression of a binary 2𝐷 𝑀 = 12 ×
81, 𝑁 = 24 × 81  matrix. Note that in the above 

matrix there are always three non −1 elements at the 

kb th column (usually they are 1 0 1). This property 

holds for all 12 LDPC codes defined in IEEE 

802.11n. This observation, together with the (dual) 

diagonal parity check sub-matrix (the right-hand 

side of Hb), can be explored to encode IEEE 

802.11n LDPC codes efficiently. 

 

     The input information sequence is denoted as  

and it is divided into 𝑘𝑏 = 𝑛𝑏 − 𝑚𝑏  groups of  bits, 

i.e. 𝑚 = [𝑚0 , 𝑚1 , . . . , 𝑚𝑘𝑏−1], where each element 

of  is a vector of length . The parity sequence can 

also be grouped as length of  bits. The codeword is 

denoted as  

 

𝑐𝑏 =   𝑚𝑝 =  𝑚0, 𝑚1 , . . . , 𝑚𝑘𝑏−1 , 𝑝0 , 𝑝1 , . . . , 𝑝𝑚𝑏−1   

 

Recall that a codeword has to satisfy Hbcb = 0. 

Expanding the above equation, the following 

equations hold: 

 

0 2 4 6 8 10
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 0,𝑗𝑚𝑗 + 𝜋1

𝑘𝑏−1

𝑗 =0

𝑝0 + 𝑝1 = 0 (0𝑡  𝑟𝑜𝑤) 

 𝑖,𝑗𝑚𝑗 +

𝑗

𝑝𝑖 + 𝑝𝑖+1 = 0 (𝑖 ≠ 0, 𝑥, 𝑚𝑏 − 1) 

 𝑥 ,𝑗𝑚𝑗 +

𝑗

𝑝0 + 𝑝𝑥 + 𝑝𝑥+1 = 0 (𝑥𝑡  𝑟𝑜𝑤) 

 𝑚𝑏−1,𝑗𝑚𝑗 + 𝜋1

𝑗

𝑝0 + 𝑝𝑚𝑏−1 = 0 ((𝑚𝑏 − 1)𝑡  𝑟𝑜𝑤) 

(13) 

where  π1p0 makes p0 circular shift 1-cycle. Adding 

up all the above equations, we have 

 

𝑝0 =   𝑖,𝑗𝑚𝑗

𝑘𝑏−1

𝑗 =0

𝑚𝑏−1

𝑖=0

 

λi =  hi,jmj
kb −1
j=0  for i = 0, ⋯ , mb − 1, the above 

equation becomes 𝑝0 =  𝜆𝑖
𝑚𝑏−1
𝑖=0 . With 𝑝0 in hand, 

𝑝1 and 𝑝𝑚𝑏−1 can be easily obtained from (13) 

 

𝑝1 = 𝜆0 +  𝜋1𝑝0 
 

𝑝𝑚𝑏−1 = 𝜆𝑚𝑏−1 +  𝜋1𝑝0 

 

    Other parity sub-vectors can be solved by upward 

and downward recursions, according to (13). In 

summary, λi =  hi,jmj
kb −1
j=0  and  λi

mb −1
i=0  are 

needed to get the codeword c. Since hi,jmj is nothing 

but a circular shift of mj, the resource requirement is 

trivial.  

 

 4.3 Encoding of Array LDPC Codes 
 

The authors in [30] started with a code that satisfies 

the condition 𝐻𝑣𝑇 = 0 and therefore defined 

 

𝐶𝐴 ∶=  𝑣 =  𝑣0 , 𝑣1 , ⋯ , 𝑣𝑘−1 ∈  Ϝ2
𝑝𝑘

 𝐻𝑣𝑇 = 0 }.          (14) 

 

 

They called the code 𝐶𝐴 an array LDPC code. The 

code 𝐶𝐴 is a (j, k)-regular LDPC code. 

 

 

The array LDPC code 𝐶𝐴 has an algebraic 

characterization similar to that of RS codes. 

Although an RS code is defined over a finite field, 

the array LDPC code can be defined over a ring. 

Then they defined a subcode 𝐶𝐴
′  ⊂  𝐶𝐴 as follows: 

 

𝐶𝐴
′ : = {𝐴(𝑧)𝐺(𝑧) |𝐴(𝑧) ∈ 𝑅𝑝[𝑧] s.t. deg 𝐴 (𝑧) <

𝑘 −  𝑗}. 
 

𝐺(𝑧) can be considered as a “generator polynomial” 

of the sub-code 𝐶𝐴
′ . Note that 𝐶𝐴

′   has length 

𝑁 =  𝑝𝑘, dimension 𝐾1 ≔  𝑝(𝑘 −  𝑗) and rate 

𝑅 ∶=  𝐾1/𝑁 =  1 −  𝑗/𝑘, which is 

the so-called design rate of ( 𝑗, 𝑘)-regular LDPC 

codes. The dimension of 𝐶𝐴
′   is smaller than that of 

𝐶𝐴 by 𝑗 −  1, but in practice j is small, e.g., 3 ≤
 𝑗 ≤  6, so that the loss of the information rate is 

negligible.  

 

Let 𝒖 ∶=  (𝒖𝟎, 𝒖𝟏, . . . , 𝒖𝑘−𝑗−1) be an information 

vector, where𝒖𝒊  =  (𝑢𝑖,0 , 𝑢𝑖,1 , . . . , 𝑢𝑖,𝑝−1)  ∈

 Ϝ𝑝
2  , 𝑖 =  0, 1, . . . , 𝑘 −  𝑗 −  1. For each 𝒖𝒊, we 

define 𝑢𝑖   𝛼 : =   𝑢𝑖,𝑠 𝛼𝑠
𝑝−1
𝑠=0 ∈  𝑅𝑝. First, construct 

the information polynomial 𝑈(𝑧) as follows: 

 

 

𝑈 𝑧 =  𝑢𝑖 𝛼 𝑧𝑖𝑘−𝑗−1
𝑖=0 . 

 

Next, compute the residue 𝑅(𝑧) of 𝑧 𝑗𝑈(𝑧) modulo 

𝐺(𝑧), i.e., 

 

𝑅 𝑧 ≡  𝑧𝑗  𝑈(𝑧) 𝑚𝑜𝑑 𝐺(𝑧). 
 

Finally, set 𝑉(𝑧) ∶=  𝑧𝑗  𝑈(𝑧)  −  𝑅(𝑧). Then 

𝑉(𝑧)  ∈  𝐶𝐴
′ . Note that since the leading coefficient 

of 𝐺(𝑧) is 1, no divisions in the ring 𝑅𝑝 are 

required. This encoding algorithm can be 

implemented on digital circuits. 

 

5  Conclusion 
 

     

QC-LDPC code has been the focus of interest for the 

last few years. Being the low complexity counterpart 

of the LDPC code, QC-LDPC has successfully 

drawn the attention of the potential researchers. 

Encoding in the LDPC code has been the most 

critical part in low complexity applications. 

Decoding can be performed at the fixed node and 

encoding is crucial for multi-hop transmission. This 

paper discusses several encoding techniques which 

may be considered for energy aware low complexity 

applications, such as in wireless sensor network. The 

future work of this paper is to develop an energy 

efficient encoding scheme for energy constraint 

wireless sensor network.  
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